Mechanistic Studies on the Radiolytic Decomposition of Perchlorates on the Martian Surface

نویسندگان

  • Andrew M. Turner
  • Matthew J. Abplanalp
  • Ralf I. Kaiser
چکیده

Perchlorates—inorganic compounds carrying the perchlorate ion (ClO4)—were discovered at the north polar landing site of the Phoenix spacecraft and at the southern equatorial landing site of the Curiosity Rover within the Martian soil at levels of 0.4–0.6 wt%. This study explores in laboratory experiments the temperature-dependent decomposition mechanisms of hydrated perchlorates—namely magnesium perchlorate hexahydrate (Mg(ClO4)2·6H2O) —and provides yields of the oxygen-bearing species formed in these processes at Mars-relevant surface temperatures from 165 to 310 K in the presence of galactic cosmic-ray particles (GCRs). Our experiments reveal that the response of the perchlorates to the energetic electrons is dictated by the destruction of the perchlorate ion (ClO4) and the inherent formation of chlorates (ClO3) plus atomic oxygen (O). Isotopic substitution experiments reveal that the oxygen is released solely from the perchlorate ion and not from the water of hydration (H2O). As the mass spectrometer detects only molecular oxygen (O2) and no atomic oxygen (O), atomic oxygen recombines to molecular oxygen within the perchlorates, with the overall yield of molecular oxygen increasing as the temperature drops from 260 to 160 K. Absolute destruction rates and formation yields of oxygen are provided for the planetary modeling community.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Perchlorate Strategy for Extreme Xerophilic Life on Mars?

The near-surface environment of Mars is a challenging environment for microorganisms to survive. Yet, resources such as perchlorates and hydrogen peroxide-water mixtures are available that could provide supportive tools for putative Martian life. Here, we focus on the useful properties of perchlorates such as hygroscopicity and the suppression of the freezing point of water, and point to perchl...

متن کامل

Perchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism

Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production ...

متن کامل

مروری بر کاربرد نانو کاتالیست‌های اکسید فلزی برای تجزیه حرارتی آمونیوم پرکلرات (علمی-ترویجی)

In this review, an attempt to collect summarized literature data on catalytic effect of nanosized metal oxides on the thermal decomposition of ammonium perchlorates is made. Several experimental results show nanometal oxides are more effective catalysts as compared to nanosized metals. Nanocatalysts decrease the activation energy and the increase the rate the thermal decomposition of ammonium p...

متن کامل

The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organi...

متن کامل

Low Temperature Aqueous Perchlorate Solutions on the Surface of Mars

Introduction: Although there has been no direct evidence for liquid water on the surface of Mars, indirect evidence comes from recent gully formation, which suggests the presence of liquid water processes near the surface [1, 2]. However, pure water is unstable in its liquid form due to the low pressures and temperatures associated with the Martian surface, so water is likely to be kept frozen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016